Tensile Properties, Collagen Content, and Crosslinks in Connective Tissues of the Immature Knee Joint

نویسندگان

  • Sriram V. Eleswarapu
  • Donald J. Responte
  • Kyriacos A. Athanasiou
چکیده

BACKGROUND The major connective tissues of the knee joint act in concert during locomotion to provide joint stability, smooth articulation, shock absorption, and distribution of mechanical stresses. These functions are largely conferred by the intrinsic material properties of the tissues, which are in turn determined by biochemical composition. A thorough understanding of the structure-function relationships of the connective tissues of the knee joint is needed to provide design parameters for efforts in tissue engineering. METHODOLOGY/PRINCIPAL FINDINGS The objective of this study was to perform a comprehensive characterization of the tensile properties, collagen content, and pyridinoline crosslink abundance of condylar cartilage, patellar cartilage, medial and lateral menisci, cranial and caudal cruciate ligaments (analogous to anterior and posterior cruciate ligaments in humans, respectively), medial and lateral collateral ligaments, and patellar ligament from immature bovine calves. Tensile stiffness and strength were greatest in the menisci and patellar ligament, and lowest in the hyaline cartilages and cruciate ligaments; these tensile results reflected trends in collagen content. Pyridinoline crosslinks were found in every tissue despite the relative immaturity of the joints, and significant differences were observed among tissues. Notably, for the cruciate ligaments and patellar ligament, crosslink density appeared more important in determining tensile stiffness than collagen content. CONCLUSIONS/SIGNIFICANCE To our knowledge, this study is the first to examine tensile properties, collagen content, and pyridinoline crosslink abundance in a direct head-to-head comparison among all of the major connective tissues of the knee. This is also the first study to report results for pyridinoline crosslink density that suggest its preferential role over collagen in determining tensile stiffness for certain tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy

The changes in the mechanical integrity of the cervix during pregnancy have implications for a successful delivery. Cervical collagens are known to remodel extensively in mice with progressing gestation leading to a soft cervix at term. During this process, mature crosslinked collagens are hypothesized to be replaced with immature less crosslinked collagens to facilitate cervical softening and ...

متن کامل

Hypoxia-induced collagen crosslinking as a mechanism for enhancing mechanical properties of engineered articular cartilage.

OBJECTIVE The focus of tissue engineering of neocartilage has traditionally been on enhancing extracellular matrix and thus biomechanical properties. Emphasis has been placed on the enhancement of collagen type and quantity, and, concomitantly, tensile properties. The objective of this study was to improve crosslinking of the collagen network by testing the hypothesis that hypoxia could promote...

متن کامل

Mechanical recruitment of N- and C-crosslinks in collagen type I.

Collagen type I is an extracellular matrix protein found in connective tissues such as tendon, ligament, bone, skin, and the cornea of the eyes, where it functions to provide tensile strength; it also serves as a scaffold for cells and other extracellular matrix components. A single collagen type I molecule is composed of three amino acid chains that form a triple helix for most of the molecule...

متن کامل

Crash Injury Analysis of Knee Joint Considering Pedestrian Safety

Background: Lower extremity injuries are frequently observed in car-to-pedestrian accidents and due to the bumper height of most cars, knee joint is one of the most damaged body parts in car-to-pedestrian collisions.Objective: The aim of this paper is first to provide an accurate Finite Element model of the knee joint and second to investigate lower limb impact biomechanics in car-to-pede...

متن کامل

A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage.

The development of functionally equivalent fibrocartilage remains elusive despite efforts to engineer tissues such as knee meniscus, intervertebral disc and temporomandibular joint disc. Attempts to engineer these structures often fail to create tissues with mechanical properties on a par with native tissue, resulting in constructs unsuitable for clinical applications. The objective of this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011